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Abstract—Many blockchain-based cryptocurrencies such as
Bitcoin and Ethereum use Nakamoto consensus protocol to
reach agreement on the blockchain state between a network
of participant nodes. The Nakamoto consensus protocol prob-
abilistically selects a leader via a mining process which rewards
network participants (or miners) to solve computational puzzles.
Finding solutions for such puzzles requires an enormous amount
of computation. Thus, miners often aggregate resources into
pools and share rewards amongst all pool members via pooled
mining protocol. Pooled mining helps reduce the variance of
miners’ payoffs significantly and is widely adopted in popular
cryptocurrencies. For example, as of this writing, more than 95%
of mining power in Bitcoin emanates from 10 mining pools.

Although pooled mining benefits miners, it severely degrades
decentralization, since a centralized pool manager administers
the pooling protocol. Furthermore, pooled mining increases the
transaction censorship significantly since pool managers decide
which transactions are included in blocks. Due to this widely
recognized threat, the Bitcoin community has proposed an
alternative called P2Pool which decentralizes the operations of
the pool manager. However, P2Pool is inefficient, increases the
variance of miners’ rewards, requires much more computation
and bandwidth from miners, and has not gained wide adoption.

In this work, we propose a new protocol design for a decentral-
ized mining pool. Our protocol called SMARTPOOL shows how
one can leverage smart contracts, which are autonomous agents
themselves running on decentralized blockchains, to decentralize
cryptocurrency mining. SMARTPOOL guarantees high security,
low reward’s variance for miners and is cost-efficient. We
implemented a prototype of SMARTPOOL as an Ethereum smart
contract working as a decentralized mining pool for Bitcoin. We
have deployed it on the Ethereum testnet and our experiments
confirm that SMARTPOOL is efficient and ready for practical
use.

I. INTRODUCTION

Bitcoin and emerging cryptocurrencies like Ethereum are
popular since they offer trustless platforms for users to transact
and run decentralized applications. For example, unlike tradi-
tional centralized systems, Bitcoin lacks a central authority to
issue fiat currency. Instead, Bitcoin maintains a peer-to-peer
distributed ledger of prior transactions that demonstrates who
owns what. Network participants run a consensus protocol
namely Nakamoto consensus to agree on the state of the
ledger [1]. In every epoch, Nakamoto consensus probabilisti-
cally selects a leader which demonstrates a solution to a com-
putational puzzle (or a “proof-of-work” puzzle) [1]. The leader
broadcasts a “block”, which includes set of new transactions

to be appended to the ledger. If such a block satisfies several
predefined validity conditions, such as not having any double
spending transactions, all network participants will update
their ledger with the new transaction block and the protocol
moves on to the next epoch. The leader (or block finder)
receives a block reward which includes block subsidy (12.5
Bitcoin, or 9, 000 USD at present) and fees of all included
transactions.

Problem. Nakamoto-based cryptocurrencies, such as Bitcoin
and Ethereum, utilize massive computational resources for
their mining. Finding a valid solution to a proof-of-work is
a probabilistic process, whereby miners with modest compu-
tational power can have extremely high variance. A desktop
CPU would mine 1 Bitcoin block in over a thousand years,
for instance. To reduce variance, miners join mining pools
to mine blocks and share reward together. In a mining pool,
a designated pool operator is responsible for distributing
computation tasks to miners which have moderate difficulty,
much lower than difficulty in solving the full PoW puzzle for
a block. Each solution to the task has a probability of yielding
a solution to the full PoW block puzzle — so if enough
miners solve tasks, then some of these solutions are likely to
yield blocks. When a miner’s submitted solution yields a valid
block, the pool operator submits it to the network and obtains
the block reward. The reward is fairly divided among all pool
members proportional to their contributed computation power.
The problem, though, is that the pool operator is centralized
(which maybe running on centralized infrastructure), and the
pool operator is in control of massive computational power of
its participants. At the time of writing, at least 95% of the
current computing power of the Bitcoin network is from 10
mining pools, making the Bitcoin network highly centralized.
Previous works also show that Bitcoin is not as decentralized
as it was designed to be [2], [3].

By design, cryptocurrencies distribute network moderation
over trustless, decentralized populations. The security of such
distributed systems relies on the assumption that the majority
of participants do not cheat. The common practice of pooled
mining undermines this security assumption by delegating
network moderation power to centralized authorities, called
pool operators, who then posses undue network influence.
Several times a single mining pool has commandeered more



2

than half of a cryptocurrency’s hash rate (e.g., DwaftPool 1

in Ethereum and GHash.io 2 in Bitcoin), and in such cases
only the pool operator’s goodwill prevented the operator from
perpetrating a 51% attack against the entire network. Further,
mining pools currently can dictate which transactions get
included in the blockchain, thus increasing the threat of trans-
action censorship significantly [4]. Although some Bitcoin
pools allow miners to choose their own transactions (still with
some rules enforced by the pools) via the getblocktemplate
protocol [5], the vast majority of mining power (i.e., more
than 80%) in Bitcoin cannot propose their own transactions 3.
Things are worse in the Ethereum cryptocurrency where it is
not even technically possible yet for centralized pools to allow
miners to include their own transaction sets. Thus, centralized
pools not only decrease decentralization, but also make cryp-
tocurrencies more vulnerable to transaction censorship. For
example, recently Ethereum network encountered many empty
blocks (i.e., blocks which do not include any transactions).
Perhaps the 5 largest pools wanted to broadcast their blocks
faster in order to earn more rewards 4.

Solution. In this work, we design a new decentralized pooled
mining protocol for existing cryptocurrencies like Bitcoin and
Ethereum using smart contracts. Smart contracts, introduced
in 1994 by Szabo [6] and realized in the Ethereum [7]
crytpocurrency in 2015, are uncensorable programs that live
on Ethereum’s blockchain and have their own executable code
and internal states, including storage for variable values, and
ether currency balance. Smart contracts are executed on a
blockchain using a consensus protocol. The smart contract’s
code, its input and output are all agreed between all the
network participants by the consensus protocol in the under-
lying blockchain. Thus, all network participants agree on the
updated state after each time the contract is triggered.

We use Ethereum smart contracts to build a decentralized
pooled mining protocol for Bitcoin called SMARTPOOL. Our
solution implicitly replaces the centralized pool operator by
network participants who run the Ethereum network. Thus, our
work shows how we can leverage one expressive cryptocur-
rency network to build pooled mining for another. In concept,
one could build a pooled mining protocol for Ethereum that
runs on Ethereum itself — however, we restrict our study
here to support pooled mining for Bitcoin as a representative
of many Nakamoto- based cryptocurrencies. Applying our
solution to support Ethereum is somewhat straightforward as
we discuss in Appendix B. SMARTPOOL does not directly
make centralized pooled mining in Bitcoin impossible, nor
does SMARTPOOL disincentivize it (as done in Miller et
al. [8]). SMARTPOOL simply offers a practical alternative to
miners to move away from centralized pools without degrading
any functionality, usability or security. SMARTPOOL takes

1https://forum.ethereum.org/discussion/5244/dwarfpool-is-now-50-5
2https://www.cryptocoinsnews.com/warning-ghash-io-nearing-51-leave-

pool/
3See GBT column in https://en.bitcoin.it/wiki/Comparison of mining

pools. In this url, BTCC and Eligius are the only two major pools which
support getblocktemplate.

4https://www.reddit.com/r/ethereum/comments/57c1yn/why dwarfpool
mines mostly empty blocks and only/

no cuts or fees 5, unlike centralized pools, and disburses all
Bitcoin block rewards to pool participants in their entirety.
Most importantly, SMARTPOOL allows miners to freely select
which transaction set they want to include in a block. Thus,
SMARTPOOL makes cryptocurrencies much more censorship-
resistant.

Technical Challenges. While previous efforts towards P2P
pools have been proposed, they have suffered from technical
drawbacks and have not gained adoption [9]. In designing
SMARTPOOL, we have overcome several of these practical
challenges (see Section III-B for details). First,everyone must
agree on who contributes what to the pool without any cen-
tralized operator. Second, the protocol needs to guarantee that
no one is able to cheat, or over-claim their contribution to the
pool. Finally, SMARTPOOL needs to guarantee feasible costs
(e.g., bandwidth and messages used) for processing millions of
task solutions for each Bitcoin block. SMARTPOOL’s operating
costs on Ethereum must be low enough to incentivize miners
to join.

SMARTPOOL includes several novel data structures and
design choices which make its protocol secure and efficient.
Specifically, we devise a new mechanism to verify and record
miners’ contributions to the pool without centralized operators.
SMARTPOOL’s efficient probabilistic verification drastically
reduces both the number of messages and the costs to run
the pool for miners. Using a novel data structure called the
augmented Merkle tree, SMARTPOOL’s batched share submis-
sion and efficient payment scheme can detect and efficiently
discourage cheating in the pool. In order to evaluate our
design, we implemented a prototype of SMARTPOOL and
deployed it on Ethereum’s testnet. We measured the costs
for Bitcoin miners when submitting their contributions to the
pool. Our experiments show that these operating costs are
negligible compared to projected income from block rewards
(e.g., less than 1% of net) for both Bitcoin and Ethereum.
Furthermore, each miner only has to broadcast a few messages
per day to SMARTPOOL. Finally, like centralized mining
pools, SMARTPOOL offers the advantage of low variance
payouts.

Previous works have proposed different applications of
smart contracts, ranging from outsourced computation [10],
smart contracts for criminal activities [11] to a decentralized
venture fund [12]. Here we propose the a new use case of
smart contracts, which decentralizes the pooled mining process
of cryptocurrencies and directly strengthens the underlying
security of the network. The security of smart contract systems
— protection against history-revision, public (or open) execu-
tion, and integrity-protected computation — directly benefits
SMARTPOOL. With SMARTPOOL, we demonstrate that it is
feasible to build new cryptocurrencies where the “pooled
mining” (or SMARTPOOL) is baked into its scripting logic,
thereby making solo-mining as incentivized as pooled mining.
In the long run, we hope SMARTPOOL obviates the need
for centralized pooled mining, which has posed several kinds
of threats to pool members in cryptocurrencies [13], [14].

5The caveat here is that Bitcoin miners will pay in Ether gas to execute
SMARTPOOL distributively

https://forum.ethereum.org/discussion/5244 /dwarfpool-is-now-50-5
https://www.cryptocoinsnews.com/warning-ghash-io- nearing-51-leave-pool/
https://www.cryptocoinsnews.com/warning-ghash-io- nearing-51-leave-pool/
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
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In the short run, we hope SMARTPOOL will offer a direct
competition to centralized pools as it takes almost “no cuts”
and distributes a greater share of block rewards to miners.

Contributions. This paper makes the following contributions.
• We introduce a new and efficient decentralized pooled

mining protocol for cryptocurrencies. Our protocol
SMARTPOOL leverages smart contracts in existing cryp-
tocurrencies, coupling with our data structures and effi-
cient verification mechanism, provides security and effi-
ciency to miners.

• We implemented a prototype smart contract of SMART-
POOL which run as a decentralized Bitcoin mining
pool. Our experiments with our deployed contract in
the Ethereum testnet demonstrate that SMARTPOOL is
practical and efficient.

• We discuss how to use SMARTPOOL to build a new line
of cryptocurrencies where mining is fully decentralized,
thus avoid threats related to centralized mining pools.

II. BACKGROUND

We give a brief introduction to mining and pooled mining
in cryptocurrency. We then provide background on smart
contracts and their execution model.

A. Pooled mining

Mining. In cryptocurrencies like Bitcoin and Ethereum, the
history of transactions between users is stored in a public
ledger namely blockchain which has a special data structure:
one block of transactions after another. In order to agree on the
state of the ledger, the network participants run a consensus
protocol, namely Nakamoto consensus, between themselves
to periodically and probabilistically elect a new leader among
them. The elected leader then proposes a new block which
includes a set of new transactions to modify the state of
the ledger. Such election is done via the mining process,
where network participants (or miners) are asked to solve
computationally hard puzzles (or proof-of-work puzzles) [1],
[15], [16]. The miners who find the solutions for the puzzles
first are rewarded with newly minted Bitcoin to incentivize
them to keep solving next puzzles and strengthen the network.

Typically, Bitcoin miners compete to search for a nonce

value that makes the following condition satisfied

H(PrevBlock || NewTXSet || nonce) ≤ D (1)

in which H is some preimage-resistant cryptographic hash
function (e.g., SHA-256), NewTXSet represents the new set
of transactions that the miner wants to include to the ledger
and D is a global parameter which determines how hard it is
to solve the puzzle on average. For example, as of this writing,
D in the Bitcoin network is set so that the valid hash must
have at least 80 leading zeros. The expected amount of SHA-
256 hashes to find a valid hash is 280. One can easily compute
that a normal Desktop CPU which can do a million SHA-256
hashes per second would take tens of thousands of years to
find a valid nonce.

1contract Ownership{
2 address public owner;
3 uint public price;
4
5 function Ownership(uint256 _price){
6 price = _price;
7 owner = msg.sender;
8 }
9

10 function buy(uint nextPrice){
11 if (msg.value >= price){ //send enough money;
12 owner.send(price);
13 msg.sender.send(msg.value-price);
14 price=nextPrice;
15 owner=msg.sender;
16 }
17 else
18 thow;
19}}

Figure 1: A contract that allow users to purchase its ownership.

Pooled Mining. Finding solutions for PoW puzzles in Bitcoin
or Ethereum is probabilistic and requires enormous resources.
Thus, miners who solve the puzzles separately (or solo-miners)
would have to wait for long time to receive their first reward.
Worse, solo-miners with limited computation power will suffer
from very high variance in their payoffs. To sidestep this prob-
lem, miners combine their power to solve the PoW puzzles
together and split the reward according to each’s contribution.
This approach is called pooled mining in which miners are
asked to solve much easier pool-puzzles. Specifically, each
pool-puzzle requires pool miners to find nonce so that the
hash satisfies some smaller difficulty d. A solution for a pool-
puzzle is called a share which has some probability of being a
valid solution for the main PoW puzzle. For example, d may
be set so that each share must have at least 50 leading zeros,
hence a share has a probability 2−30 of being a valid block.

Once a miner in the pool finds a valid block, the reward
(12.5 Bitcoin and transaction fees, as of this writing) is split
between all pool miners proportional to their contributions,
which are measured based on the number of shares they have
submitted [14]. The pooled mining protocol guarantees that
the miner cannot claim the reward of the block to himself or
any other miners.

B. Smart Contracts in Ethereum

Smart contract. A smart contract (or contract for short)
is a special account on the Ethereum blockchain. A normal
account would have its address and the balance (in Ether).
However, a smart contract, in addition, has its code and its
private persistent storage (e.g., a mapping between variables
and values). The contract’s code is akin to normal program,
in which the program manipulates its variables. To invoke a
contract (e.g., execute its code) at address α, users send a
transaction to α with appropriate payload, i.e., payment for the
execution (in Ether) and/ or input data for the invocation. Each
invocation starts execution in a contract state σ and results in
a new state σ′ of the contract.

A simple example of a contract is in Figure 1 which
allows users to pay to existing owner of the contract and
become the next owner. After initialization, any user in the
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Ethereum network can just send the required amount of Ether
to the contract and claim the ownership of the contract. The
execution of the contract is guaranteed to be correct (i.e.,
always get the ownership after paying enough Ether) as long
as a majority of the miners in Ethereum are honest.
Gas system. In order to compensate the miners for executing
smart contracts, each operation in Ethereum smart contract
costs some specific gas amount, which can be directly con-
verted to Ether. However, careful readers may notice that a
well-financed adversary can ask the miners to compute ex-
pensive computation in some smart contract, thus conducting
DoS attack to the whole network [10]. In Ethereum, there
is gas limit value in each block which dictates how much
computation one can ask the network to compute in the block.
Although this gas limit prevents the Dos attack on the miners,
it rules out running several computation-intensive applications
on the Ethereum blockchain.

III. PROBLEM AND CHALLENGES

A. Problem Definition
In this work we consider the problem of building an efficient

decentralized pooled mining protocol for cryptocurrencies.
Such a protocol must satisfy the following ideal properties.
• Decentralization. There is no centralized operator who

manages the pool. The pool is collectively maintained
and run by all miners in the network. There is also
no requirement for joining the pool, i.e., anyone with
sufficient mining power can freely participate in and
contribute to the pool.

• Efficiency. The pool should give miners the same reward
and guarantee low variance as if they were mining with
centralized pools. Further, the number of messages, the
amount of bandwidth, local computation and other costs
consumed by miners must be reasonably small.

• Security. The pool protocol protects miners from attackers
who might steal rewards or prevent others from entering
the pool.

• Fairness. Miners receive rewards in proportion to their
share contributions to the pool. Big miners and small
miners are treated equally.

Threat model and security assumptions. Cryptocurrencies
like Bitcoin and Ethereum allow users to use pseudo anony-
mous identities in the network. Users do not have any inherent
identities and there is no PKI in the network. Here we do not
violate any of these properties in our solutions.

We consider a threat model where miners are rational,
which means they can deviate arbitrarily from the honest pro-
tocol to gain more reward. An alternative is a malicious model
where the attacker does anything just to harm other miners. In
this work we are not interested in the malicious model here
since i) such sustained attacks in cryptocurrencies often require
huge capital, and ii) existing centralized pools are not secure
in such a model either [13], [17], [18]. We also assume that
the adversary controls less than 50% of the computation power
in the network. This assumption guarantees that the consensus
protocols in Bitcoin and Ethereum networks perform correctly.

On the other hand, we do not make any assumption on the
centralization or trusted setup in our solution apart from what
have been made in existing cryptocurrencies 6.

B. Challenges and Existing Solutions

Challenges. There are several security and performance chal-
lenges in building a decentralized mining pool.
• C1. First, pool miners must agree on how much each

miner contributes to the pool. This essentially requires
running a consensus protocol among all miners in the
pool on top of Bitcoin’s underlying consensus proto-
col. However, running an additional consensus protocol
between pool miners makes the security of the pool
dependent on how much computation power the pool
has (i.e., how well the pool is adopted). Specifically, any
adversary who controls more than half of the computation
power in the pool is able to subvert the consensus protocol
in the pool.

• C2. In decentralized mining pools, messages exchanged
between miners in the pool are in plaintext, thus any
network adversary can observe other miners’ shares and
either steal or resubmit the shares. This challenge does
not exist in centralized pools where miners can establish
secure and private connections to the pool, thus one can-
not know when and which shares a miner submits to the
pool. In decentralized settings, such secure connections
are not immediate since i) there is no centralized operator
who can initiate secure connections to miners, and ii)
there is no PKI between miners in the pool. Thus, a good
design for a mining pool must prevent the adversary from
stealing others’ shares. Similarly, the pool should prevent
miners from over-claiming their contribution by either re-
submitting previous shares or submitting invalid shares.
Centralized pools can efficiently guarantee this since the
pool manager can check every submission from miners.

• C3. The number of shares in the pool may be too
large, thus increasing the number of messages exchanged
between miners in the pool. For example, let us consider
the scenario when there are 1, 000, 000 shares on average
to get a valid block. A naı̈ve solution may require miners
to create 1, 000, 000 messages and broadcast to other
miners in the pool to submit their shares. With the current
capacity of existing agreement protocols in open and
decentralized environments, no network can process that
many messages within the course of a few minutes [19],
[20]. On the other hand, reducing the number of shares
per block by increasing the share difficulty will increase
the variance in reward for miners, thus damaging the
sole advantage of pooled mining. Figure 2 demonstrates
how adjusting the difficulty of shares affects the variance
of miners’ reward and the amount of resource (both
bandwidth and computation) consumed per miner in a
decentralized pool.

6Cryptocurrencies like Bitcoin and Ethereum have the trusted setup where
the first block in these networks are constructed and provided by Satoshi
Nakamoto (for Bitcoin) and Ethereum Foundation (for Ethereum).
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Figure 2: The relationship between the share’s difficulty and
i) the probability of find a share within a day (black line) as
per [14]; ii) resource (i.e., number of messages) consumed
by a miner (dashed line); in a decentralized mining pool
(e.g., P2POOL).

Existing solutions. The most prominent pooled mining pro-
tocol is a centralized one, where there exists a pool manager
who distributes the work to miners, records how much work
they have submitted and splits the reward proportionally. Apart
from operating in centralized environments and increasing the
threat of transaction censorship, other disadvantage of this
model is that the pool managers either charge miners some
fee, or take all transaction fees included in the block for profit
and/ or to compensate for the cost of running the pool. Thus,
miners often receive less reward than they should.

P2POOL is the first and only attempt we are aware of which
decentralizes pooled mining [9]. At a high level, P2POOL
solves the agreement problem (i.e., challenge C1) by running
an additional Nakamoto Consensus protocol to build a share-
chain between all miners in the pool. The share-chain includes
all shares submitted to the pool, one after another (just like
the normal Bitcoin blockchain, but each block is a share). To
guarantee that every share is submitted and credited once (i.e.,
challenge C2), P2POOL leverages the coinbase transaction (a
special transaction in a block which pays the block reward
to miners, discussed more in Section IV-B). Specifically, a
share is valid and belongs to P2POOL and a) it extends the
latest share in the share-chain; b) it satisfies some predefined
difficulty; c) it pays the rewards to miners correctly based on
the state of the share-chain.

P2POOL satisfies almost all ideal properties of a decen-
tralized pool (defined in Section III-A) but the efficiency
and security properties. Specifically, P2POOL does not solve
challenge C3 since the number of messages exchanged be-
tween miners in P2POOL is linearly dependent on the number
of shares in the pool. If it were easy to find a share in
P2POOL, the number of messages to be broadcast would
increase and miners would need to spend much more resources
(e.g., bandwidth, local computation) to download, verify all the
shares from others (see Figure 2). Thus, P2POOL requires high
share difficulty in order to reduce the number of transmitted
messages. Therefore, often miners get much higher variance of
their reward than mining with centralized pools. As discussed

in previous work [14], high variance in the reward (i.e., the
supply of money) decreases miners’ utility, makes it harder for
miners to predict their income and verify that their systems
are working correctly. As a result, as of writing, P2POOL
attracts only few miners and controls a negligible fraction of
the mining power in the Bitcoin network (the last block mined
by P2POOL was almost a month ago [9]).

In addition, P2POOL, although being decentralized, does
not provide much security guarantee because of challenge C1.
The security of the share-chain in the pool depends on how
much computation power in the pool (i.e., just like the security
of Bitcoin blockchain). As of writing, P2POOL accounts for
less than 0.1% of the Bitcoin mining power, thus all miners in
P2POOL are vulnerable to any adversary who controls even
only 0.1% of the mining power in the network. Hence, it is
arguable if miners in P2POOL enjoy better security guarantee
than miners in centralized pools.

C. Our Solution
Our solution for a decentralized pooled mining leverages

Ethereum smart contracts which are decentralized autonomous
agents running on the blockchain itself. At a high level,
we replace the pool manager by a smart contract, which
is collectively maintained and run by miners in Ethereum
network. The smart contract acts like the bookkeeper for the
pool, by storing all shares submitted by miners. When a new
share is submitted, the contract verifies the validity of the
share, checks that no previous record of the share exists, and
then updates the corresponding miner’s record. We borrow
a technique from P2POOL which allows miners to locally
generate the block template of the pool based on the state
of the contract (discussed more in Section IV-B). If a miner
finds a share which is a valid block, it will broadcast the block
to the Bitcoin network and submit the block header to the pool
to update the miners’ records. Our protocol guarantees that the
reward for the block is distributed fairly to other miners in the
pool.

Apart from the challenges described in Section III-B, there
are additional challenges in building such a smart contract for
a mining pool. We illustrate them by considering a straw-man
solution in Figure 3 which implements P2POOL in a smart
contract. The solution works by having a smart contract which
receives all the shares submitted by miners, verifies each of
them and records how many shares one has submitted. The
contract has a designated address so that miners in the pool
can send the block reward to the address (i.e., in the “coinbase”
transaction, which pays the newly minted coins as the block
reward to miners). A share is valid if it uses only the contract
address as the output address in the coinbase transaction and
satisfies the predefined difficulty (e.g., Line 7). This guarantees
that the pool will receive the reward of the block mined by pool
miners. On every share submission, the pool verifies the share
and updates the contribution statistics of the pool members
(Line 14). If a miner finds a valid block, the smart contract
distributes the reward to miners in the pool proportional to
their contribution so far, based merely on the amounts of shares
they submit (Line 17). A solution like the one in Figure 3, apart
from C1, C2, C3, has the following additional challenges.
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1contract StrawmanPool{
2 mapping (uint256 => boolean) mSubmittedShares;
3 mapping (uint256 => int) mContribution;
4
5 function submitShare(someShare) returns (boolean){
6 // check validity
7 if !isValid(someShare)
8 return false;
9 // check if the share has been submitted

10 if mSubmittedShares[someShare.hash]
11 return false;
12 mSubmittedShares[someShare.hash] = true;
13 // update miner’s contribution
14 mContribution[msg.owner] += 1;
15 // distribute reward if is a valid block
16 if isValidBlock(someShare)
17 distributeReward(mContribution);
18 return true;
19 }
20}

Figure 3: Pseudo-code of a straw-man solution which imple-
ments a mining pool in a smart contract

• C4. A valid share earns miners a small amount of reward,
but miners may have to pay much more for fee (in Ether,
the underlying currency of Ethereum) when submitting
their shares to the pool. This fee is to compensate for
any storage and computation required when verifying the
share and update the contract state (see Section II). Thus,
a poor design of the pool’s like in Figure 3 may render
negative incomes for miners when the fee paid to submit
a share outweighs the reward earned by the share itself.

• C5. A smart contract in Ethereum running a Bitcoin min-
ing pool must guarantee correct payments on Bitcoin’a
network. This is tricky because Bitcoin miners expect to
receive rewards in Bitcoin, but Ethereum contracts can
only send and receive Ether.

Next, we briefly describe how we address these challenges
to achieve several ideal properties in SMARTPOOL.

• SMARTPOOL guarantees the decentralization property by
implementing the pool as a smart contract. Like any
smart contract, SMARTPOOL is operated by all miners
in the Ethereum network, yet SMARTPOOL can be used
to secure different network (e.g., Bitcoin) or even the
underlying network (e.g., Ethereum) itself. SMARTPOOL
relies on the consensus protocol running in Ethereum
network to allow miners to agree on the state of the
pool (i.e., challenge C1). In addition, SMARTPOOL’s
security depends directly on the underlying network (i.e.,
Ethereum) which runs the pool, not on how well the pool
is adopted.

• SMARTPOOL’s efficiency comes from allowing miners to
claim their shares in batches, e.g., one transaction to the
SMARTPOOL contract can claim, say, 1 million shares.
Furthermore, miners do not have to submit data of all
shares but only a few for the verification purpose, hence
the transaction fee per share is negligible. As a result, the
number of transactions required to send to SMARTPOOL
is 5 – 6 orders of magnitude less than the number of
shares (i.e., the number of messages in P2POOL.)

• We propose a novel and efficient probabilistic method for
verifying share submission from miners. Our probabilistic
verification, coupling with a simple but powerful payoff
scheme, allows us to achieve the same outcome as run-
ning a full verification for each submission. Specifically,
we guarantee that miners will receive their expected
reward based on their contributions even when other
miners turn malicious and submit invalid shares. This
immediately guarantees fairness.

• We devise a novel data structure to prevent miners
from submitting duplicated shares or resubmitting shares
in different batches. We achieve this fairness property
without requiring miners to communicate the bulk of their
submitted shares data.

• SMARTPOOL employs similar techniques from P2POOL
for checking which shares are valid and belong to the pool
before paying the miners for the shares. These techniques
also guarantee that miners cannot steal others’ shares,
and that they can mine directly in their target currency
(i.e., Bitcoin) without trusting a third party to proxy the
payment. Nevertheless, miners still need to acquire ether
to pay for the gas when they send transactions to claim
their shares to the pool. Such costs are less than 1%
of miners’ reward as we show in our experiments with
SMARTPOOL’s deployment in Ethereum testnet.

IV. DESIGN

In this section, we detail the design of SMARTPOOL.
SMARTPOOL’s design can be used to implement a decentral-
ized mining pool for many existing target cryptocurrencies,
but for clarity of exposition we fix Bitcoin as the target. We
remark that one could build a cryptocurrency with completely
decentralized by employing SMARTPOOL as the unique min-
ing protocol in that system.

A. Overview of SMARTPOOL

SMARTPOOL is a smart contract which implements a de-
centralized mining pool for Bitcoin, running on the Ethereum
network. SMARTPOOL maintains two main lists in its contract
state — a claim list claimList and a verified claim list
verClaimList. When a miner submits a set of shares as claim
for the current Bitcoin block, it is added to the claimList.
Each claim specifies the number of shares the miner is
claiming to have found, and it has a particular structure
that aids verification. SMARTPOOL then verifies the validity
of the claim, and once verified, it moves it to the verified
share list (denoted as verClaimList). As discussed later in
Section IV-B, each claim allows miners to submit a batch of
(say, 1 million) shares. Submitted claims include sufficient
meta-data for the verification purpose.

In Section IV-C we will discuss our verification protocol,
a key contribution of this work which enables efficiency.
The goal of the verification process is to prevent miners
from both submitting invalid shares and over-claiming the
number of shares they have found. SMARTPOOL pay claimants
proportional to the number of shares claimed, only if the
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Field Size
(bytes) Name Data type

4 version int32 t
32 prevBlock char[32]
32 TxMerkleRoot char[32]
4 timestamp uint32 t
4 bits uint32 t
4 nonce uint32 t

Table I: Header of a Bitcoin block. This is also used as the
header for shares in pooled mining.

verification succeeds, otherwise nothing. The key guarantee
here is that of fairness — SMARTPOOL does not advantage
miners who cheat by claiming invalid or excessive shares. If
miners are rational, their payoff from cheating is the same or
worse than that as honestly reporting their shares.

In order to generate valid shares, miners query the
verClaimList in the contract which records the contributed
shares by different miners to date. Thus, if a miner finds
a fraction f of the shares in SMARTPOOL, he gets paid
proportional to f in the reward that SMARTPOOL’s miners get.
Further, to enable efficient verification checks, SMARTPOOL
forces miners to search for blocks with a particular structure
and dictates a particular template for claim submissions,
which we discuss in Section IV-B. Unlike P2POOL, miners
in SMARTPOOL do not have to run any additional consensus
protocol to agree on the state of the SMARTPOOL. Instead,
miners rely on the underlying Ethereum network in which
SMARTPOOL is deployed to maintain the consistent state
information of the pool.

B. Claim Submissions

Miners can submit a large batch of shares in a single claim.
To permit this, SMARTPOOL defines a Claim structure which
consists of a few pieces of data. First, the miner crypto-
graphically commits to the set of shares he is claiming. The
cryptographic commitment goes via a specific data structure
we call a augmented Merkle tree, as discussed in Section IV-D.
The Merkle root of this data structure is a single cryptographic
hash representing all the shares claimed and is included in the
Claim as a field called ShareAugMT.

After a miner claims several shares in a batch, SMARTPOOL
requires the miner to submit proofs to demonstrate that the
shares included in the claim are valid. For each claimed
share being examined, SMARTPOOL defines a ShareProof

structure to help validate the share. First, SMARTPOOL re-
quires a Merkle proof, denoted as AugMkProof, to attest that
the share has been committed to ShareAugMT. Furthermore,
SMARTPOOL guarantees that if a miner finds a share that is
a valid Bitcoin block, then the miner must share its reward
with all the pool members in proportion to their previously
submitted shares. In Bitcoin, there is a special transaction
called a “coinbase” transaction whose output consists of a
list of Bitcoin addresses paid and along with their payment
amounts. A share in SMARTPOOL is valid if the miner can
demonstrate that the share has a valid coinbase transaction

1 Input: Empty
2 Output:
3 Value: 12500000
4 scriptPubKey: OP_DUP OP_HASH160 404371705

↪→ fa9bd789a2fcd52d2c580b65d35549d
5 OP_EQUALVERIFY OP_CHECKSIG
6
7 Value: 12500000
8 scriptPubKey: OP_DUP OP_HASH160 08578

↪→ d1ac2b4bb797f6f133933c3ea8fbc418746
9 OP_EQUALVERIFY OP_CHECKSIG

10 ...

Figure 4: An example of a coinbase transaction in SMART-
POOL. The first output pays to the owner of the share.

(labeled as the field Coinbase) in their ShareProof paid out
to the pool members. The miner cannot selectively choose to
omit this transaction; it is required to be the first transaction
in the list of transactions (called TxList) on which the miner
has searched for shares. The claimant must submit a Merkle
root as commitment over the set TxList he has selected,
and a Merkle proof (labeled CoinProof) that it contains the
coinbase transaction. Second, the ShareProof contains an
indication of the verClaimList based on which the payouts
to miners were determined by the claimant. This last field is
called a Snapshot and is an implementation detail to allow
discretizing payouts on an ever-growing verClaimList; we
refer readers to Section IV-D for details. Figure 5 effectively
reports all data fields of our Claim and ShareProof structures.

It is straightforward to see how SMARTPOOL’s use of
cryptographic commitments prevents certain timing vulnera-
bilities. SMARTPOOL asks the miners to fix their coinbase
transaction before starting to mine shares. Once a share is
found, it is not possible to change or eliminate the coin-
base transaction. SMARTPOOL credits the first output of the
coinbase transaction as the founder of the share. Although
miners may use different addresses to submit their claims to
the contract, SMARTPOOL credits only a single account per
share by fetching the beneficiary account from the coinbase
transaction, irrespective of who is the sender of the transaction
submitting the claim. This prevents miners from claiming the
same share to different Bitcoin addresses (or accounts), forcing
a one-to-one mapping between shares found and addresses
credited for it. If a network attacker steals someone else’s
share, it cannot pay itself since the coinbase transaction has
already committed to a payee.

Similarly, a miner cannot decide to change the coinbase
transaction after he has found a share which is a valid block.
This prevents the miner from claiming Bitcoin block rewards
and not sharing them with the pool miners. If he modifies
the coinbase transaction from the TxList after discovering a
block, he must recompute the hash on a different transaction
list which will result in re-doing all the work in finding a valid
Bitcoin block.

Shares in SMARTPOOL vs. centralized pools. Shares in
SMARTPOOL follow the same data templates as that of a block
header in Bitcoin, which is illustrated in Table I. The miner’s
task is to find a valid nonce which results in hash of the
specified share difficulty. If the share satisfies the Bitcoin block
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difficulty, the miner can submit it to the Bitcoin network and
that has the effect of paying out the newly minted Bitcoin to
all the SMARTPOOL members as per the coinbase transaction.
Figure 4 depicts an example of a coinbase transaction in
SMARTPOOL. The first output of the transaction pays to the
miner who is mining the block; latter outputs pay to other
miners included in the verClaimList. The total value of all
outputs in the coinbase transaction equals to the block reward.
The Bitcoin block reward is 12.5 Bitcoin and the transaction
fees of all included transactions, as of this writing. All shares,
whether valid Bitcoin blocks or not, can be directly used in
SMARTPOOL claims.

In a centralized pool, the pool manager prepares the share’s
header as in Table I, but without a valid nonce and gives it to
miners. Once miners find and submit valid shares or blocks,
the pool manager will check whether these shares/blocks are
actually generated from correct headers given by the pool
before accepting them. This is also how the pool operators can
dictate which transaction set to be included in a block. In our
decentralized setting, such pool operators do not exist. Instead,
SMARTPOOL forces a particular structure which miners can
later use to prove that their shares and blocks are constructed
in a valid way — a technique also used in P2POOL.

C. Batched Submission & Probabilistic Verification

The practicality of SMARTPOOL stems directly from its
efficiency in processing a large number of shares claimed.
Miners can claim multiple shares to SMARTPOOL in one
submission. Each Claim includes less than one hundred bytes
which has a cryptographic commitment for the shares, as field
called ShareAugMT. This cryptographic commitment forces
the miner to commit to a set of shares before including them
in the claim. Ideally, before accepting any claim of n shares
submitted by the miner, we want to verify that

(i) all shares submitted are valid;

(ii) none of the shares is repeated twice in the same claim;

(iii) none of the shares is included in one claim are reused in
another.

Probabilistic verification. For efficiency, SMARTPOOL uses
a simple but powerful observation: if we probabilistically
verify the claims of a miner, and pay only if no cheating
is detected, then expected payoff to cheating miners is the
same or lesser than those of honest miners. In effect, this
observation reduces the effort of verifying millions of shares
down to probabilistically verifying one or two!

We provide a way to sample shares to verify, outline a
detailed procedure for checking validity in Section IV-D, and
a full proof in Section V. Here, we begin by explaining this
observation intuitively with an example, since it may appear
too strong or counter-intuitive at first. Let us consider the
case that a cheating miner finds 500 valid shares, but claims
that he has found a 1000 valid shares to SMARTPOOL. If
SMARTPOOL were able to randomly sample one share from
the miner’s committed set, and verify its validity, then the odds
of having detected the cheating is 500/1000 (or 1/2). If the
miner is caught cheating, he is paid nothing; if he gets lucky

without being detected, he gets rewarded for 1000 shares. Note
that the expected payoff for such a miner is still 500, computed
as (0.5 ·1000+0.5 ·0) = 500, which is the same as that of an
honest miner that claimed the right amount of valid shares. The
argument extends easily to varying amounts of cheating; if the
cheater wishes to claim 1, 500 shares, he is detected with with
probability 2/3 and stands to get nothing. The higher his claim
away from the true value of found shares, the lower is the
chance of a successful payout. By sampling more than once,
SMARTPOOL can reduce the success probability of a cheater’s
payout further, thereby strictly disincentivizing cheating as we
show in Section V.

Searching for shares. To enable probabilistic verification,
SMARTPOOL prescribes a procedure for mining shares. Each
SMARTPOOL miner is expected to search for shares in a mono-
tonic order, starting from a distinct value that it commits to.
Specifically, if the set of claimed shared S = {s1, s2, . . . , sn}
by a miner, SMARTPOOL requires that the first k (say 20) bits
of all si ∈ S form a monotonically increasing sequence. To
ensure this, each time a miner find a valid nonce that yields
a valid share, they increment the counter by at least 1 and
search for the next share. When the miner claims for the set
S, this ensures that the set S is lexicographically ordered. If
the nonce is long enough, there is expected to be one share
per counter value, with overwhelming probability. The miner
commits the latest counter in his Claim to this set S, which
has at most one share for each counter value. This eliminates
any repeats in claimed shares in one claim, and across claims
by one miners. In Bitcoin, as we discussed in Section IV-D,
we use the share’s timestamp to act as the counter of a share.

Note that SMARTPOOL effectively guarantees that shares of
miner are distinct from that of others. Each miner has different
beneficiary address, so their Coinbase transactions and share
templates are also different. This ensures that each miner is
searching in a distinct sub-space of the search space over time.

Checking Validity of Shares. To check if miners have
followed the prescribed procedure, SMARTPOOL randomly
samples a share in a submitted Claim, and asks the miner
to submit a ShareProof (as described in Section IV-B).
SMARTPOOL validates the following:

(i) the hash value of the share nonce meets the difficulty
criterion;

(ii) the share is constructed on a TxList which includes the
Coinbase transaction;

(iii) the Coinbase transaction is constructed correctly based
on a valid verClaimList;

The check for (i) is straighforward. The check for (ii) can be
done using the TxMerkleRoot, the Coinbase and the Merkle
proof CoinProof submitted in the ShareProof. The check
for (iii) confirms that a valid verClaimList (identified by
the Snapshot field) is used in the payouts of the Coinbase

transaction, by checking the outputs of Coinbase transaction.
It remains to discuss (a) how miners cryptographically

commit to a batched set of shares in a claim, (b) how does
SMARTPOOL verify that the committed set has monotonically
increasing counters, and (c) how shares are sampled. For (a)
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and (b), one can think of using a standard Merkle tree on all the
claimed share set to generate the cryptographic commitment.
However, in a normal Merkle tree, verifying the inclusion
of a share is efficient, but checking the ordering of the set
elements is not efficient. In SMARTPOOL, we devise a new
data structure called augmented Merkle tree to help us verify
inclusion and ordering of shares efficiently. We describe this
scheme and implementation of sampling on Ethereum next.

D. Detailed Constructions

Augmented Merkle tree. Recall that a Merkle tree is a binary
tree in which each node is the hash of the concatenation of
its children nodes. In general, the leaves of a Merkle tree will
collectively contain some data of interest, and the root is a
single hash value which acts as a certificate commitment for
the leaf values in the following sense. If one knows only the
root of a Merkle tree and wants to confirm that some data x
sits at one of the leaves, then holder of the original data can
provide a path from the root to the leaf containing x together
with the children of each node traversed in the Merkle tree.
Such a path is difficult to fake because one needs to know
the children preimages for each hash in the path, so with high
probability the data holder will supply a correct path if and
only if x actually sits at one of the leaves.

For the purposes of submitting shares in SMARTPOOL, we
not only want to ensure that shares exist in the batch list but
also that there are no repeats and ordering of the counters
is correct. We therefore introduce an augmented Merkle tree
structure which we use to guard against duplicate leaves.

Definition 1 (Augmented Merkle tree). An augmented Merkle
tree for a set of objects S = {s1, s2, ..., sn} with respect to a
integer-valued counter function ctr is a tree whose nodes x
have the form (min(x), hash(x),max(x)) where

(I) min(x) is the minimum of the children nodes’ min (or
ctr(si), if x is a leaf corresponding to the object si),

(II) hash(x) is the cryptographic hash of the concatenation of
the children nodes (or hash(si) if x is a leaf correspond-
ing to the object si), and

(III) max(x) is the maximum of the children nodes’ max (or
ctr(si), if x is a leaf corresponding to the object si).

An augmented Merkle tree is called sorted if all of its leaves
occur in strictly increasing order from left to right with respect
to its counter function.

SMARTPOOL expects claims of submitted shares to be
ordered by their counters. Thus, for our purposes, each object
si will be a share, and the ordering function ctr(x) will return
the timestamp of x. In Appendix A, we discuss alternative
candidates for the ordering function ctr with backward com-
patibility to Bitcoin.

Figure 6 gives an example of an augmented Merkle tree
based on four submitted shares with timestamps as 1, 2, 3, 4
respectively. To prove that the share c has been committed,
a miner has to submit two nodes d and e to SMARTPOOL.
SMARTPOOL can reconstruct other nodes on the path from c

to the root (i.e., b and a sequentially) and accepts the proof if
the computed root is the same as the committed one.
Batch Submission with augmented Merkle trees. After
collecting a list of shares, the miner locally constructs an
augmented Merkle tree for all the shares in the list. It then
submits the data of the root node of the tree along with a
number indicating how many shares it finds to SMARTPOOL.
For example, the miner in Figure 6 submits the node a as
the cryptographic commitment, which has min and max as 1
and 4 respectively. We use this committed data to i) verify
that the sampled shares are found before the miner submits
the claim; ii) efficiently check if a share is duplicated in a
claim. Verifying i) is straightforward as aforementioned. We
compute the probability that we detect duplicated shares in a
claim in Section V. Basically, any duplicated shares in a claim
will yield a sorting error in at least one path of the augmented
Merkle tree. Thus, by sampling the tree in a constant number
of places and checking the corresponding paths, with some
probability we will detect a sorting error in the augmented
Merkle tree if there is one.
Verifying with Samples. Our augmented Merkle tree allows
us to detect if miners over claim shares or submit invalid shares
in a claim. However, it does not help us guarantee that miners
do not submit the same shares in two different claims, i.e.,
over-claiming shares across claims. Our solution to prevent
this problem is to track the counters of the shares in every
claim, or the timestamp in our current implementation. We
observe that, for a single miner, the timestamps are different
for different shares, and often increasing over time. Thus
for any two different claims, the maximum timestamp of the
shares in the earlier claim is always smaller than the minimum
timestamp of the shares in the later one. This observation
enables a simple duplication check on the shares submitted
in two different claims. Specifically, we use timestamps as
the counters for the shares, and require miners to submit
their claims in chronological order of timestamps. We use an
additional variable last max in our smart contract to keep track
of the maximum timestamp (i.e., max value of the root node
in the augmented Merkle tree) from the last claim. We only
accept a new claim if the min value of the root node is greater
than last max, and update last max properly if the new claim
is valid.
Payment scheme. Miners are rewarded according to the
amount of shares that they submitted to the pool. In centralized
pools, the pool manager is able to check every share submitted
by miners, thus can apply any payment scheme precisely
to pay miners for only the valid shares that they submit.
In SMARTPOOL, since we use probabilistic verification, our
payment scheme must be designed to not only pay fairly
to miners, but also disincentivize miners from submitting
invalid shares by penalizing them if they do so. We propose
a candidate of such schemes in Definition 2.

Definition 2 (Payment Scheme). In SMARTPOOL, the pay-
ment scheme for a claim of n submitted shares is as following:{

Pay all n shares if invalid share was not detected;
Pay 0 otherwise.
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Notations
• Let NSize, NSample denote the number of shares included in a claim and the number of random samples SMARTPOOL

will verify in each claim respectively.
• Let claimList[x] store all unverified claims submitted by the miner at address x.
• Let verClaimList[x][y] store all verified and unpaid claims submitted by the miner at address x at block y.
• Let maxCounter[x] store the maximum counter of the miner at address x.
• We denote d as the minimum difficulty of a share.

Data structures. The Claim structure has the following fields.
1) the number NSize of claimed shares;
2) the ShareAugMT commitment of the set of claimed shares.

The ShareProof structure for a share si has the following fields.
1) the header of the share si (as in Table I) located at the i-th leaf in the augmented Merkle tree;
2) the AugMkProof, attesting that si is committed to the ShareAugMT;
3) the Coinbase transaction;
4) the CoinProof, attesting that the coinbase transaction is included in the TxList of si; and
5) the Snapshot of verClaimList that the Coinbase is computed on.

Main executions in SMARTPOOL

• Accept a claim. Accept a claim C which has the Claim structure and includes NSize shares from a miner x. Add C to
claimList[x] and update maxCounter[x].

• Verify a claim. Receive a proof p which has ShareProof structure for a share si included in a claim C from miner x.
SMARTPOOL verifies the following.

1) if i is the supposed position that we want to sample based on the intended block hash;
2) if si’s hash is included in the claim C by verifying amkpsi ;
3) if si meets the minimum difficulty d;
4) if si’s counter is greater than the last maxCounter[x];
5) if Coinbase is included in si based on CoinProof;
6) if Coinbase is correctly constructed with respect to Snapshot of verClaimList.

We reject the claim C if any of the above checks fail. If everything is correct and we have verified NSamples from C,
update verClaimList[x]. Otherwise, wait for more proofs from miner x.

• Get a new valid block. If a new block is mined by SMARTPOOL, update verClaimList.

For miners
• Fetch coinbase transaction. Fetch verClaimList from SMARTPOOL and build the coinbase transaction locally.

• Find valid shares. Simply search for valid nonce which yields valid shares.

• Submit a claim. If have found enough NSize shares, build an augmented Merkle tree and submit a claim C to
SMARTPOOL to claim these NSize shares.

• Submit proofs. Wait until C is accepted then construct and submit NSamples proofs pi, (i = 1, 2, . . . , NSamples) to
SMARTPOOL.

Figure 5: Summary of how SMARTPOOL protocol works for both the pool and miners.

In Section V, we prove that our payment scheme disincen-
tivizes rational miners from submitting wrong solutions. Our
detailed analysis shows that we need to randomly sample only
1 share in each claim to make expected payoffs from cheating
equal to that of honest mining in SMARTPOOL.

Randomly sampling shares. In order to randomly sample
shares, we need a random seed. A practical random seed
can be the hash of a future block. To reduce the amount of
bias that any adversary can introduce to the block hash, one
can take several samples based on several consecutive block
hashes. For example, let us consider a scenario where a miner

submits a claim of 1 million shares at block 1, and we wish
to sample 5 random shares for our probabilistic verification.
The miner is required to submit the data of 5 shares which
are corresponding to hashes of blocks 1, 2, 3, 4 and 5 (e.g., the
hash values modulo 106) to SMARTPOOL for the verification.
If the miner fails to submit any of these determined shares
after, say, 20 blocks, the share is considered invalid.

Putting everything together, we summarize the entire
SMARTPOOL protocol in Figure 5.
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a = [1, hash(b, e), 4]

b=[1, hash(c, d), 2]

c=[1, share1, 1] d=[2, share2, 2]

e=[3, hash(f, g), 4]

f=[3, share3, 3] g=[4, share4, 4]

Figure 6: A sorted augmented Merkle tree for a list of shares with timestamp values from 1 to 4.

V. ANALYSIS

We analyse the security guarantee that SMARTPOOL pro-
vides with our probabilistic verification and payoff scheme in
Definition 2. In SMARTPOOL, we rely on the block hash in
Ethereum to randomly sample the shares to verify claims from
miners. Thus, our analysis considers two different scenarios in
which the adversary can and cannot drop blocks in Ethereum
to bias the random seeds.

A. Security Analysis

We first analyze the scenario where the adversary cannot
drop Ethereum blocks to introduce bias on our random seed,
so the sample blocks in our probabilistic scheme are ran-
domly selected. We argue that it suffices for the SMARTPOOL
contract to check a single, randomly chosen path through a
submitted augmented Merkle tree in order to pay fairly for
shares, on average. If all submitted shares are valid and there
are no duplicates, then SMARTPOOL pays for all shares with
probability 1. The following facts will be useful.

Lemma 3. For any node x In any augmented Merkle tree,

(I) min(x) is the minimum of all nodes below x, and

(II) max(x) is the maximum of all nodes below x.

Proof. We will prove (I), and (II) follows by symmetry. Let
y be any node below x, and trace a path from x to y in
the given augmented Merkle tree. The min of x’s immediate
children along this path is, by definition of augmented Merkle
tree, no greater than min(x). Similarly for the next children
down, and so on, down to y. Therefore min(x) ≤ y.

Proposition 4. Let A be an augmented Merkle tree. The
following are equivalent:

(I) A is sorted.

(II) For every node x, the max of x’s left child is less than
the min of x’s right child.

Proof. We argue by induction. Assume (I), and further assume
than (II) holds restricted to the first n levels above the leaves
(the leaves are at the ground (i.e., zero) level). Consider a
node x at depth n+ 1. By the inductive hypothesis, the max
of x’s left child is less than the min of the next right child
down, which is less than the min of the next right child down
and so on, all the way down to some leaf y. By a symmetrical
argument, the min of x’s left child is greater than some leaf
z which happens to be to the right of y. Since A is sorted, it
follows that min(x) < y < z < max(x).

Next assume (II), and let y and z be any two leaves. Let
x be the lowest node (farthest from the root) which is an
ancestor of both y and z. By Lemma 3, y is less than or equal
to the max of x’s left child, and z is is greater than or equal
to the min of x’s right child. Now y < z follows from the
assumption, hence A is sorted.

Definition 5. A node in an augmented Merkle tree which
satisfies condition (II) of Proposition 4 is called valid. Fur-
thermore, we say that a path from a root to a leaf is valid if
all its constituent nodes are valid. A path which is not valid
is invalid.

Theorem 6. Let A be an augmented Merkle tree. If A is
sorted, then all paths in A are valid. If A is not sorted, then
there are at least as many invalid paths in A as sorting there
are sorting errors among the leaves. In particular, there are
at least as many invalid paths as there are duplicate values
among the leaves.

Proof. If A is sorted then all its nodes are valid by Proposi-
tion 4, hence all paths in A are valid. Now suppose A is not
sorted, and consider the highest node x in the tree (farthest
from the root) which is is an ancestor of two distinct leaves
y and z where y is left of z but z ≤ y. Now x is not valid,
because by Lemma 3 the max of x’s left child is at least y
and the min of x’s right child is no more than z. It follows
that neither the path from root to y nor the path from root to
z is valid because both pass through x.

The theorem above shows that miners who submit valid,
sorted shares will receive their proper reward. It remains to
demonstrate that sampling and checking a single one branch
in the augmented Merkle tree suffices to discourage miners
from submitting duplicate shares.

Corollary 7. Under the payment scheme in Definition 2, if
SMARTPOOL checks one random branch in the augmented
Merkle tree of a claim, the expected reward when submit
invalid or duplicated shares is the same as the expected reward
when submit only valid shares.

Proof. Suppose that in a claim of an adversary, there are
k shares which are either invalid or duplicated. Since we
randomly pick a path, by Theorem 6, an invalid share is
detected with probability at least k/n. Hence the expected
profit from the payment scheme in Definition 2 is

((n− k)/n) · n+ 0 = n− k,

in which ((n − k)/n) · n is the reward when the cheating
is successful, and 0 is the reward when SMARTPOOL detects
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invalid or duplicated shares. On the other hand, one expects
to obtain this much profit by submitting only the n− k valid
shares. Thus, on average, it is not profitable to submit invalid
shares to SMARTPOOL if we employ the payment scheme in
Definition 2 and check one random path from the augmented
Merkle tree.

In summary, SMARTPOOL can efficiently probabilistically
check that an augmented Merkle tree is sorted. Since it’s
difficult to construct a fake path through an augmented Merkle
tree, we can assume that if the path looks real, then so is the
augmented Merkle tree that contains it.

B. Analysis of Biasing Seed Selection

We next consider the scenario in which the the adversary
is able to drop Ethereum blocks to bias the random seed.
Thus, the sample blocks in our probabilistic verification are
not randomly selected, i.e., the adversary can drop the blocks
which sample invalid shares from his claim. We show that,
even in the extreme case where the adversary controls up to
50% of Ethereum mining power (i.e., can drop 50% of the
blocks), SMARTPOOL contract can check only two randomly
chosen paths through a submitted augmented Merkle tree to
discourage the adversary from cheating. We note that this
analysis is for the completeness of the paper. In practice,
such dropping block attacks rarely happen since the loss from
dropping an Ethereum block is much more than the reward
gained by a claim itself, as we show in Section VI.

Theorem 8. If an adversary controls less than 50% of
Ethereum hash power, then it suffices to sample only two
branches of the augmented Merkle tree based on two Ethereum
consecutive blocks to pay miners fairly, on average.

Proof. We call an Ethereum block a good block for the
adversary A if its hash samples a valid share in the adversary’s
claim; otherwise the block is a bad block. Suppose that in
the adversary’s claim, γ fraction of the shares are invalid
(0 ≤ γ ≤ 1). By Theorem 6, at least γ fraction of the paths in
the corresponding augmented Merkle tree are invalid. Hence,
on average 1−γ fraction of the blocks are good blocks, since
each block hash is a random number. The probability that
the adversary’s claim is still valid after two samples is the
probability that two consecutive blocks in Ethereum are good
blocks. We aim to compute this latter probability.

Let us assume that the choices of the two sample shares are
drawn based on the hash of a single block hash, and let us as-
sume that attacker controls p fraction of the network’s mining
power. The attacker’s strategy is to successively drop blocks
until he finds one that favorably samples his claim submission.
We estimate his probability of success. The probability that he
succeeds in exactly one round, regardless of who mined the
block, is (1− γ)2, that is, if the samples drawn are favorable.
The chances that the attacker wins in exactly two rounds is
the probability that the first block gave unfavorable sampling,
but the attacker managed to mine it, and the next sample was
favorable. The probability that all three of these independent

events occurs is [1 − (1 − γ)2] · p · (1 − γ)2. In general, the
chance that the attacker succeeds in exactly k rounds is

f(k) =
(
1− (1− γ)2

)k−1 · pk−1 · (1− γ)2.
Summing over all possible game lengths k, we find that the
chance that the attacker wins is exactly

∞∑
k=1

f(k) = (1− γ)2 ·
∞∑
k=0

[(
1− (1− γ)2

)
· p
]k
.

Since the right-hand side is a geometric series in which the
magnitude of the common ratio is less than 1, we obtain

∞∑
k=1

f(k) =
1

1− (1− (1− γ)2) · p
=

1

1 + (γ2 − 2γ)p
.

The block withholding strategy is profitable if and only if this
probability exceeds the attackers chances of success without
block withholding, namely 1 − γ. That is, the values p for
which block withholding is advantageous satisfy

1

1 + (γ2 − 2γ)p
> 1− γ. (2)

We complete the analysis by inspecting the cases where p is
greater than or less than the threshhold 1/(2γ−γ2). In the first
case it follows that p ≥ 1/2, since this threshhold is always
at least 1/2 when 0 < γ ≤ 1, and if γ = 0 then the attacker
has no incentive for dropping blocks. In the second case, the
left hand side of (2) is negative, and so the inuequality in (2)
fails in this case.

Our result in Theorem 8 also applies to the scenario in Sec-
tion V-A where the adversary cannot drop Ethereum blocks.
By checking only two samples in each claim, SMARTPOOL
disincentivizes miners to submit invalid shares, and still pays
fairly to honest miners, on average.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe how we implemented SMART-
POOL in our prototype and present experimental evaluation of
the expected fees after deploying our prototype in Ethereum
testnet.

A. Implementation

We implement SMARTPOOL protocol (as described in Fig-
ure 5) in an Ethereum smart contract. Our implementation
consists of three modules, namely, claim submission, verify
submission and block submission.

Claim submission. This module allows miners to submit
their shares in batch. A miner submits a set of shares by
calling submitClaim() with the parameters: (i) augmented
Merkle root of the corresponding augmented Merkle tree for
the shares; (ii) number of shares in the tree; (iii) timestamp
interval of the shares. A submission is accepted only if the
initial timestamp is greater than the previous submission final
timestamp.

Verify submission. A miner submits a proof for the validity of
his last submitted batch of shares by calling verifyClaim()
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with a branch in the augmented Merkle tree that corresponds
to the next block hash. In our current implementation, we
only sample one branch, or NSample = 1. We allow different
claims to include different amounts of shares, i.e., NShare

are different between claims. If the verification fails, then the
claim is discarded, and the miner will not be able to submit
all the shares (or a subset of them) again (forced by validating
timestamp in submitClaim()). If the verification is successful,
then the claim is added to the to the verifiedClaim list.
Construct and verify coinbase transaction. Recall that the
payment to the miners is done via the coinbase transaction
of a mined block. As per Figure 5, SMARTPOOL allows
miners to fetch the verifiedClaim list and build the coinbase
transaction locally. This approach, however, has a technical
challenge regarding the transaction size when we implement
SMARTPOOL in the current Ethereum network. Specifically, a
single coinbase transaction should be able to pay to hundreds
or thousands of miners, thus it will have as many outputs.
As a result, the size of the coinbase transaction could be in
the order of 10KB (e.g., P2POOL’s coinbase transactions is of
size 10KB 7). Hence, it is expensive to submit a coinbase
transaction of that size to an Ethereum contract. Thus, in
SMARTPOOL implementation we could not ask miners to sub-
mit the coinbase transaction as the input for verifyClaim()
function.

To address the challenge, we modify SMARTPOOL protocol
slightly. Instead of asking miners to construct and submit the
whole coinbase transaction, we ask them to work on only a
small part of it. Specifically, we observe that we can fix the
postfix of the coinbase transaction by using the pay per share
scheme. Recall that the block reward consists of the block
subsidy (12.5 Bitcoin) and the transaction fees. Thus, in our
implementation, we pay the transaction fee to the miner who
finds the block in the first output of the coinbase transaction.
The rest 12.5 Bitcoin (the block subsidy) is paid to, say, the
next 1 million shares in verifiedClaim. This distribution
is encoded in all the latter outputs. Thus, we can fix all the
outputs but the first one in the coinbase transaction, since
the next 1 million shares in verifiedClaim are the same
for all miners. This allows us to maintain the postfix of the
coinbase transaction in SMARTPOOL and only ask miners to
submit the prefix (the first output) when they verify a share.
Our approach significantly reduces both the gas fees paid for
verifyClaim() and also the amount of bandwidth that miners
have to send for verification.
Block submission. The block submission module allows any
user to submit a witness for a new valid block in the Bitcoin
blockchain so that SMARTPOOL can have the latest state of the
blockchain. If the block is mined by miners in SMARTPOOL,
SMARTPOOL updates the verifiedClaim list to remove the
paid shares from the list. This also reduces the amount of
persistent storage required in the contract since we do not
need to store all verified claims in SMARTPOOL.

There are other technical subtleties in block submission
and constructing coinbase transaction, we discuss these in the
Appendix A.

7http://tinyurl.com/zrp3dod

Function Gas Price Tx size
submitFullBlock() 297550 0.07 1925
submitClaim() 38757 0.008 68
verifyClaim()

210 shares 395587 0.09 1956
220 shares 441256 0.10 2956
230 shares 452127 0.10 3236
240 shares 486862 0.11 3876
250 shares 608207 0.13 4516

Table II: Ethereum fee of contract operations. Prices are in
USD based on the price of 11 USD per Ether (as of November
2016.) Tx (transaction) size is in bytes.

B. Experimental results

In this section we present experimental results to evaluate
the ethereum fees that our protocol entails. The results are
presented in Table II. In our experiments Bitcoin blocks
contain 2048 transactions (roughly the maximum number of
transactions a block can have 8), and coinbase transactions
have 300 outputs (i.e., 300 miners are paid whenever a block is
found). The contract contains 450 lines of Solidty code and we
deployed it in Ethereum testnet network 9. The deployment of
the contract consumed 3223680 gas (0.72 USD). The contract
source code is anonymously available at 10. The transactions
we used for the evaluation are 11 12 13 14 15 16 17.

Execution Costs. To compare our fees with standard pool fees
we calculate the expected fees for every submitted share. The
expected fee depends on three values:
• Bitcoin’s block reward.
• The value (difficulty) of a share.
• Size of a claim (i.e., number of shares).

Bitcoin’s block reward is currently 12.5 BTC or more than
8, 000 USD. A share difficulty depends on the miner hash
power. It is recommended that miners should set the difficulty
such that a share is submitted 20 times per minute 18. Hence, a
single ASIC miner with 4Th/s mining power, which has only
third of the hash rate with comparison to the most modern
mining ASICs 19, should set his share difficulty to 4,096 20.
Hence, on average, each of his shares should be rewarded

8, 000 · 4, 096

254, 620, 187, 304
= 0.00012869 USD (3)

Finally, we set the size of a claim to 100, 000. We note that
in 20 share per minute rate, a batch submission should occur

8https://blockchain.info/charts/n-transactions-per-block
9http://tinyurl.com/j4g54gr
10http://tinyurl.com/zmlae5y
11http://tinyurl.com/hcuy8xn
12http://tinyurl.com/z62mxpz
13http://tinyurl.com/zfemq7l
14http://tinyurl.com/zftnr65
15http://tinyurl.com/zvncv7y
16http://tinyurl.com/gp77d5z
17http://tinyurl.com/zq8f66c
18https://slushpool.com/help/#!/manual/terminology#vardiff
19https://www.hobbymining.com/mining-hardware/
20https://slushpool.com/help/#!/first-aid/troubleshooting

http://tinyurl.com/zrp3dod
https://blockchain.info/charts/n-transactions-per-block
http://tinyurl.com/j4g54gr
http://tinyurl.com/zmlae5y
http://tinyurl.com/hcuy8xn
http://tinyurl.com/z62mxpz
http://tinyurl.com/zfemq7l
http://tinyurl.com/zftnr65
http://tinyurl.com/zvncv7y
http://tinyurl.com/gp77d5z
http://tinyurl.com/zq8f66c
https://slushpool.com/help/#!/manual/terminology#vardiff
https://www.hobbymining.com/mining-hardware/
https://slushpool.com/help/#!/first-aid/troubleshooting
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every 3.5 days. One can always adjust the share difficulty to
be able to submit their claim with higher frequency.

In our pool, the effective block reward is slightly smaller, as
0.07 USD of the block reward should be given to the miner
who submitted the witness for a block that was found (see
Table II). In addition, every claim submission also have fees.
For a batch of size 100, 000, the total fees for the submission
are 0.108 USD. Hence, the expected reward per share is

(8, 000−0.07)· 4, 096

254, 620, 187, 304
− 0.108

100, 000
= 0.0001276 USD

(4)
From (3) and (4), our pool fees, as a fraction of the share
reward, are

0.00012869− 0.0001276

0.00012869
= 0.0084

Namely, our fees are less than 1%, which are less than fees
in most of the centralized pools [21].

Costs of non-probabilistic verification approach. To demon-
strate the usefulness of the probabilistic verification, we also
deployed a DUMBPOOL contract 21 which verifies each share
In this contract every share is submitted to verifyShare

function in order to check its validity and claim a payment. In
this approach, a single call to verifyShare consumes 320056
gas, costs 0.07 USD and requires 1,124 bytes of data 22. We
note that the fee of the submission exceeds the share reward by
two orders of magnitude. Hence, such an approach is infeasible
with Ethereum contracts.

VII. APPLICATIONS

We discuss several applications that can be built based
on SMARTPOOL. One straightforward application is to build
decentralized mining pools for cryptocurrencies as we have
established. Apart from requiring low costs, guaranteeing low
variance in rewards to miners than the only related solution
P2POOL, SMARTPOOL is also more secure. Specifically, one
must compromise the entire Ethereum network (e.g., having
more than 50% of Ethereum network) in order to compromise
SMARTPOOL. On the other hand, the adversary only needs
to acquire 51% of P2POOL’s mining power in order to build
the longest share-chain in P2POOL and rule out other miners’
contributions.

The second application is a new cryptocurrency based on
SMARTPOOL in which mining is fully decentralized. Typ-
ically, we enforce the consensus rule such that only the
blocks generated by SMARTPOOL is accepted as valid blocks.
Thus, if we are able to run a pool’s smart contract based
on SMARTPOOL in the same cryptocurrency network, min-
ers have no incentives to go for centralized pools. In such
cryptocurrencies, miners can solo mine and still enjoy low
variance in reward, better security guarantee and pay no fee.
Unfortunately, it is not feasible to deploy the above idea
in existing cryptocurrencies without a major change in their
design. As shown in previous Sections, we run SMARTPOOL
as a Bitcoin mining pool in Ethereum network (but not a

21http://tinyurl.com/hzlcxl2
22http://tinyurl.com/z8oszxr

Bitcoin mining pool in the Bitcoin network, or an Ethereum
mining pool in the Ethereum network) is because of two
reasons. First, its not technically possible to run SMARTPOOL
in the Bitcoin network yet since Bitcoin’s script is very strict
and not expressive enough to implement all logics in SMART-
POOL. Second, running SMARTPOOL as an Ethereum mining
pool requires additional complications (see Appendix B) since
efficiently verifing Ethereum’s proof of work within a smart
contract is hard 23.

Technically, one can easily build a SMARTPOOL-based
cryptocurrency by replacing the proof of work in Ethereum
by the Bitcoin’s proof of work and adding the aforementioned
consensus rule which dictates that only SMARTPOOL can
produce new valid blocks. Such cryptocurrencies can offer
several good properties to the network that existing cryp-
tocurrencies cannot. First, mining is fully decentralized, yet
miners still enjoy low variance in reward. This improves the
security of the underlying network as a whole significantly.
Second, miners are not susceptible to several attacks targeting
to pooled mining. For example, in [13], [17], [18] the authors
demonstrate that if a malicious miner withholds blocks from
a victim pool and mines privately in other pool, the miner can
earn more profits from the loss of miners in the victim pool.
Such block withholding attack does not work in SMARTPOOL-
based cryptocurrencies since there is only one pool in the
network.

VIII. RELATED WORK

P2POOL. The work which most directly relates to SMART-
POOL is P2POOL [9]. At a high level, P2POOL maintains
a share-chain among the miners in the pool: once miners
find a share they broadcast it to everyone so others can
extend the share-chain further. Thus, miners in P2POOL run
a second consensus protocol on top of the main Bitcoin
consensus protocol to agree on the list of shares that each
miner contributes to the pool. As discussed in Section II,
P2POOL consumes much more resource (both computation
and network bandwidth), and the variance of reward is still
much higher than in centralized pools. SMARTPOOL solves
these problems in P2POOL by i) relying on the smart con-
tracts which are executed in a decentralized manner; ii) use
probabilistic verification and novel data structure to reduce
verification costs significantly; iii) apply appropriate payment
scheme to discourage miners from cheating the pool. As a
result, SMARTPOOL is the first decentralized pooled mining
protocol which has low costs, guarantees low variance of
reward to miners. Further, SMARTPOOL is more secure than
P2POOL since any miner who has more than 50% of the
mining power in P2POOL can fork and create a longer share-
chain. On the other hand, the adversary has to obtain more
than 50% of computation power in Ethereum network to
compromise SMARTPOOL.
Pooled mining research. Several previous works have anal-
ysed the security of pooled mining in Bitcoin [3], [13], [14],
[17], [18]. In [13], [17], [18], the authors study the block

23ethereum.stackexchange.com/questions/2328/is-it-possible-to-verify-
ethash-pow-in-a-contract

http://tinyurl.com/hzlcxl2
http://tinyurl.com/z8oszxr
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ethereum.stackexchange.com/questions/2328/is-it- possible-to-verify-ethash-pow-in-a-contract
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withholding attack to mining pools and show that the attack
is profitable when conducted properly. In [14] Rosenfeld et
al. discuss (i) “pool hopping” in which miners hop across
different pools utilizing a weakness of an old payoff scheme,
and (ii) “lie in wait” attacks where the miner strategically
calculates the time to submit the found block. These attacks
also apply to SMARTPOOL when SMARTPOOL is used as a
decentralized mining pool in existing network. However, in
SMARTPOOL-based cryptocurrencies where there is only one
mining pool which follows SMARTPOOL design, these attacks
no longer work.

In [8], Miller et al. study different puzzles and protocols
which either make pooled mining impossible and/ or disin-
centivize it. Out work is different from [8] in several aspects.
First, we aim to provide an efficient and practical decentralized
pooled mining protocol so miners have an option to move
away from centralized mining pools. Second, SMARTPOOL
is compatible with current Bitcoin and Ethereum networks
as we do not require any changes in the design of these
cryptocurrencies. In [8], the solutions are designed for new
and future cryptocurrencies which have different design from
existing ones.

In [2], [3], the authors study the decentralization of the
Bitcoin network. Gervais et al. in [2] showed that Bitcoin
is not as decentralized as it was design to be in terms of
services, mining and protocol development. On the other hand,
Bonneau et al. provided an excellent survey on Bitcoin which
also covered the security concerns of pooled mining [3].
Smart contract applications. Previous works have proposed
several applications which are built on top of smart con-
tracts [11], [12], [22]. For example, in [11], Juels et al. study
how smart contracts support criminal activities, e.g., money
laundering, illicit marketplaces, and ransomware due to the
anonymity and the elimination of trust in the platform. Such
applications are built separately from the underlying consensus
protocol of the network. In this work, we propose a new
application of smart contract that enhances the security of the
underlying network by supporting decentralized mining pools
with low variance of reward, high efficiency and security.

IX. CONCLUSION

In this paper, we present a new protocol design for an ef-
ficient decentralized mining pool in existing cryptocurrencies.
Our protocol, namely SMARTPOOL, resolves the centralized
mining problem in Bitcoin and Ethereum by enabling a plat-
form where mining is fully decentralized, yet miners still enjoy
low variance in reward and better security. Our experiments in
the Ethereum testnet show that SMARTPOOL is efficient and
ready for deployment in real networks.
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APPENDIX

A. Implementation Subtleties

In this section we address two technical issues that arise
from the design of the protocol. The first issue is the format
of a witness for a new valid block, and the second issue is
how a miner should decide on his coinbase transaction in the
next share he mines.

Witness for a new valid block. Intuitively, a witness for a new
block is a block header with sufficient difficulty. However, in
Bitcoin network (like in any blockchain based network), some
of the mined blocks could be orphan, namely, they could be
transmitted to the network a short period before or after an
uncle block (a different block that extends the same previous
block) was found. In this case the network will eventually
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form a consensus over only one of the blocks, and the other
block(s) will become orphan (and will not get any block
reward from the network). In our protocol we must update
the miners verClaimList list only according to non-orphan
blocks. For this purpose, as a witness we ask for a chain of
six blocks. While in theory, even a chain of six blocks could
become orphan, in practice it never happened.

Deciding on the coinbase transaction of the next share.
In order for a share to be valid it must have a coinbase
transaction that corresponds to a verClaimList list. How-
ever, the verClaimList list is updated by the Ethereum
contract. Hence, the contract is only aware of the Ethereum
timestamp in the time the list is updated. On the other
hand, verifyClaim() function supposes to verify the coinbase
transaction according to the Bitcoin timestamp of the share.
For this purpose we need to synchronize Bitcoin and Ethereum
timestamps. The synchronization is done by introducing a new
time metric, namely, the number of blocks SMARTPOOL has
found. With this new notion of timestamp, we implement the
verClaimList list in such way that a list of payment claims
is maintained for every integer n. The list of n corresponds to
the payments that have to be done when SMARTPOOL finds
block number n. As new blocks might be reported with some
delay, a payment request for a bulk that is verified in time n
is added to the payment list of time n+ 20.

Given this implementation, the miner should construct the
coinbase transaction in time n in the following way: As long
as a new block is not found, the coinbase should correspond to
list n. Once a new block is added to Bitcoin’s blockchain, the
miner should immediately start working on list n+ 1 (which
already exists, as it was constructed at time n − 19), even
before the new block is submitted to the contract. If the new
block becomes orphan, the miner should switch back to list
n. Otherwise, after six blocks he should submit a witness for
block n.

We note that in this approach the miner might do some stale
unrewarded work in case the new block ends as an orphan
block. However, such cases are also not rewarded in standard
pools.

Other candidates for counter. Careful readers may realize
that the timestamp field has only 4 bytes, thus we will run out
of values for the counter after 232 shares. In SMARTPOOL,
one can have several ways to implement the share’s counter.
For example, one can embed the counter inside the coinbase
transaction of a share. Specifically, Bitcoin allows users to
insert 40 random bytes in a transaction output after the
OP RETURN opcode 24. SMARTPOOL can force miners to store
the share’s counter in these 40 bytes, which can accommodate
much more number of shares (i.e., 2320).

B. Verifying Ethereum PoW

The cryptographic hash function that Ethereum is using is
Ethash 25. Ethash is not a native opcode nor a pre-compiled
contract in the Ethereum virtual machine (EVM). Hence, to

24https://en.bitcoin.it/wiki/OP RETURN
25https://github.com/ethereum/wiki/wiki/Ethash

verify that a block header satisfies the required difficulty we
have to explicitly implement a code that computes it. Ethash
was designed to be ASIC resistance, which is achieved by
forcing miners to extract 128 values from pseudo-random
positions of a 1 GB dataset. Thus, to explicitly compute Ethash
we would have to store 1 GB data in a contract, which
costs roughly 33,554 ether (storing 32 bytes of data costs
50,000 gas). Moreover, the Ethereum protocol dictates that
the dataset is changed every three days (on average). Hence,
one would require a budget of approximately $100,000 per
day to maintain the dataset 26.

Luckily, for our purposes, there is no need to compute
Ethash. Instead it is enough to verify that result of an Ethash
computation. For this purpose it is enough to ask the miner to
submit along with every block header the 128 dataset values
that are used when computing its Ethash and a witness for the
correctness of the dataset elements, i.e., that the 128 values
correspond to the values of the corresponding positions in
the 1 GB dataset. Intuitively, to verify the witness for dataset
elements the contract will hold merkle-root of the dataset and a
witness for a single element is its merkle-branch. Formally, the
pool contract holds the merkle-roots of all the 1 GB datasets
that are applicable for the next 10 years. We note that the
content of the dataset only depends on block number (i.e., the
length of the chain). Hence, it is predictable and the values of
all future datasets is already known. Storing one year dataset
roots requires storing 122 elements, and would cost 0.122
Ether. Hence, storing 10 years of dataset roots would cost
in the order of 1 Ether.

We note that technically, our approach does not provide a
mathematical guarantee for the correct computation of Ethash.
Instead it guarantees correct computation provided that the
correct dataset roots were stored. Hence, it is the miner’s
responsibility (and best interest) to verify the stored values
(at least for the next several months) before joining the pool.
As the verification is a purely algorithmic, no trust on the
intentions of the contract authors is required.

Further optimizations. Some initial experiments 27 suggests
that the computation of Ethash would still require non-trivial
amount of gas (in the order of 3M gas). The consequence of
an expensive verification is that miners would have to submit
big batches in order to keep fee at low level. To reduce the
expected fees we propose to skip the validation of some of
the batches. Denote p = 1

N for some integer N . We propose
to verify a batch only with probability p, and if the batch is
invalid then we seize a reward of N submitted batches. For
this purpose we change the protocol in the following way:

• Miner can withdraw the reward for its first N submissions
only when he leaves the pool.

• In the first N submissions, every batch is verified.

26Technically, one could store a smaller subset of seed elements and
calculate the values of the dataset on the fly. Unfortunately, to extract values
from seed one would have to compute SHA3 512, which is not a native
opcode in the EVM, and would require massive gas usage if employed many
times.

27http://tinyurl.com/gw83mqs
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• After the first N submissions, a batch is verified only
with probability p.

We now analyze the economic implications of the changed
protocol. On the positive side, in the long run, the expected
fees are dropped by a factor of N . On the negative side, a
miner would have to pay fees in the order of 0.1 Ether for each
of the first N batches (which is reasonable for e.g., N = 10).
In addition, he will get a possession over his first N batches
reward only when he leaves the pool.
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